

Malware Analysis: Citadel

2012. 12. 14

AhnLab ASEC (AhnLab Security Emergency response Center)

Analysis Team

The following is a detailed analysis report of the malware Citadel. As with similar malware such as Zeus and

SpyEye, Citadel functions as an agent that sets up a botnet and an info-stealer that extracts authentication data.

Citadel is also a bot agent that downloads and executes files to install a variety of malware

2

1. Similarity between Citadel and Zeus

A. Overview

The Citadel Trojan is malware created by a malicious code generating program. It is very similar to the

Zeus Trojan in terms of logical structure as well as physical data. This means Citadel is also designed to

steal personal information used in financial transactions likes Zeus did. Moreover, it allows attacker do

DDoS that paralyze large-scale systems and infrastructure, because Zeus and Citadel basically constructs

the extensive botnet that consists of large number of infected computers. In addition, the attacker can

arbitrarily execute any malicious codes such as ransomeware and scareware on the infected computer

that has already installed bot agent(Backdoor).

The dangers of the Citadel Trojan have been brought into the limelight from the start of 2012. It is known

to have been created based on the source code of Zeus. A number of malware (Citadel, Gameover Zeus,

Ice IX, Licat, Murofet) have been created after the source code of Zeus was made public, but the team

creating Citadel is the most organized and continuing to provide service among them.

B. Similarities

Fig. 1. Code-level Similarity: Citadel vs. Zeus

Citadel (bot agent) is 213,504 bytes and made up of 762 functions. Citadel shares 575 identical

functions with the Zeus source code. Of those, 318 are designed to mimic the function of the Zeus source

code and the other 257 are utility routines such as strings, memory, network and encryption.

In short, Citadel physically matches Zeus by approximately 75%. The other 25% of routines consist of

new manage functions(e.g. Main, Initialization and Finalization), new encryption libraries and utility

functions.

3

2. Citadel: Common with Zeus

A. Citadel Malware Installation

Fig. 2. Citadel Malware Installation Process

When Citadel is executed, the Citadel Agent is installed as shown in Fig. 2. ① to ③ show the image-

dropping technique frequently employed by malware. The dropper (child) process appears to have an

image of dropper.exe, but what actually results is a process with a completely different image generated by

the dropper process. Malware creators freqently use the image-dropping technique because it allows more

covert PE generation and execution than file-dropping. In other words, it is used to mask their presence to

evade detection by security software.

The newly-generated PE image does not engage in malicious activity immediately; instead, it copies

dropper.exe to a target location. The PE image seems to simply copy itself below the path %AppData% in

a random name, but debugging reveals that the data of the 0x400 bytes at the end of the file is

restructured and overwritten at the end of random.exe. This encrypted data of 0x400 bytes subsequently

control the routine flow of the PE image. For further technical details, refer to [Attachment:Technical –

0x400data Decryption Process].

Once the installed Citadel malware (random.exe) is executed, a batch file is used to delete the dropper

(⑤, ⑥). More precisely, the random process sends a signal to the dropper (child) process that remains

active. The dropper (child) process then performs the command by generating and executing a batch file

for deleting dropper.exe before ending itself. At this point, dropper.exe is deleted without issues because

the very first dropper process has already terminated.

⑦ to ⑨ are identical to ① to ③. The random process executes the exact same activity executed by

the dropper process except the deletion process.

4

Fig. 3. Logical internal routine of dropper.exe and the PE image

The random (child) process upon completion of image-dropping, however, appears to be quite different

from the dropper (child) process. The PE image data injected in the virtual memory are completely

identical, but an entirely different routine is executed due to the 4-byte flag in the 0x400-byte data

described above. The random (child) process injects the PE image in the explorer process and all of its

child processes (i.e. ⑩: global injection). The injected PE image (Citadel agent) functions in each process

as an independent thread.

The Citadel agent injected in the explorer process and its child processes is identical to that of the

dropper (child) and random (child), but functions as an entirely different program as the entry point is

different. Fig. 3. shows the logical structure (overall function) of the Citadel Trojan, which has been

designed to execute the routine required by context in the PE file and image. Here, it can be seen that the

core function (bot agent and info-stealer functions) of Citadel is executed in the Citadel agent routine.

System fix for as a malware re-execution strategy is also executed in the Citadel agent routine (⑪). The

strategy used is the registration of absolute path random.exe in the registry key shown below.

• HKU\%SID%\Software\Microsoft\Windows\Currentversion\Run

Design of the Citadel dropper is primarily focused on security program and analysis evasion. For

example, the code is made to appear as a GUI program instead of a malware dropper and the API actually

used by the code is assigned dynamically. As expected, the library name and function name to be used

are encrypted. Also, binary obfuscation technology is used to hinder analysis through reverse engineering

and API calls take place using a dynamically-written shellcode. For technical details on the anti-analysis

technique described above, refer to [Attachment: Technical – Citadel Dropper: Anti-analysis Method].

B. Citadel Agent Functionality

The Citadel agent (injected code) has two functions: a passive function automatically executed on an

infected system and an active function executed upon receipt of a command from the C&C server. The

passive function is executed by the hooked code that set through hooking in the Citadel agent initialization

functions when required. While the active function is also executed by the hooked code set in the network

API, it is not executed without a command (network packet) from the C&C.

• Passive: User-level API Inline Hooking

Inline hooking of Citadel is executed in the function {.text:0041b7ee}. The gethostbyname and

5

getaddrinfo APIs are hooked by the injector as a test. The APIs shown in [Table 1] are actually hooked

when the Citadel agent is initialized. As the table shows, the majority of the hooked codes are identical

to those of the Zeus source code. As such, these codes will be categorized by class file (*.cpp) and

explained. For newly-added or edited hooked codes, refer to Chapter 3.

API Name Hooked Code Same as Zeus’s Hooked Code

NtCreateUserProcess .text:00419AEA corehook.cpp / hookerNtCreateUserProcess()

NtCreateThread .text:00419A34 corehook.cpp / hookerNtCreateThread()

LdrLoadDll .text:00419C0F Citadel Unique

ExitProcess .text:00419E37 Citadel Unique

GetFileAttributesExW .text:00419E78 corehook.cpp / hookerGetFileAttributesExW()

CreateProcessAsUserA .text:00419EDE Citadel Unique

CreateProcessAsUserW .text:00419EF5 Citadel Unique

PlaySoundA .text:00419F0C Citadel Unique

PlaySoundW .text:00419F33 Citadel Unique

HttpOpenRequestW .text:0041D72A Citadel Unique (But Similar as Zeus’)

HttpOpenRequestA .text:0041D768 Citadel Unique (But Similar as Zeus’)

HttpSendRequestW .text:0041D7A6 wininethook.cpp / httpSendRequestBodyW()

HttpSendRequestA .text:0041D7FB wininethook.cpp / httpSendRequestBodyA()

HttpSendRequestExW .text:0041D850 wininethook.cpp / httpSendRequestExBodyW()

HttpSendRequestExA .text:0041D8ED wininethook.cpp / httpSendRequestExBodyA()

HttpEndRequestA .text:0041D98A Citadel Unique (But Similar as Zeus’)

HttpEndRequestW .text:0041D9D5 Citadel Unique (But Similar as Zeus’)

InternetCloseHandle .text:0041DA20 Citadel Unique (But Similar as Zeus’)

InternetReadFile .text:0041DA8D wininethook.cpp / hookerInternetReadFile()

InternetReadFileExA .text:0041DABB wininethook.cpp / hookerInternetReadFileExA()

InternetSetFilePointer .text:0041DB3A Citadel Unique (But Similar as Zeus’)

InternetQueryDataAvailable .text:0041DB94 wininethook.cpp / hookerInternetQueryDataAvailable()

HttpQueryInfoA .text:0041DBC0 wininethook.cpp / wininethook_hookerHttpQueryInfoA()

closesocket .text:004249ED sockethook.cpp / hookerCloseSocket()

Send .text:00424A25 sockethook.cpp / hookerSend()

WSASend .text:00424A46 sockethook.cpp / hookerWsaSend()

OpenInputDesktop .text:00411A9E vncserver.cpp / hookerOpenInputDesktop()

SwitchDesktop .text:00411AEE vncserver.cpp / hookerSwitchDesktop()

6

DefWindowProcW .text:00411B0C vncserver.cpp / hookerDefWindowProcW()

DefWindowProcA .text:00411B52 vncserver.cpp / hookerDefWindowProcA()

DefDlgProcW .text:00411B98 vncserver.cpp / hookerDefDlgProcW()

DefDlgProcA .text:00411BDE vncserver.cpp / hookerDefDlgProcA()

DefFrameProcW .text:00411C24 vncserver.cpp / hookerDefFrameProcW()

DefFrameProcA .text:00411C6D vncserver.cpp / hookerDefFrameProcA()

DefMDIChildProcW .text:00411CB6 vncserver.cpp / hookerDefMDIChildProcW()

DefMDIChildProcA .text:00411CFC vncserver.cpp / hookerDefMDIChildProcA()

CallWindowProcW .text:00411D42 vncserver.cpp / hookerCallWindowProcW()

CallWindowProcA .text:00411D8B vncserver.cpp / hookerCallWindowProcA()

RegisterClassW .text:00411E10 vncserver.cpp / hookerRegisterClassW()

RegisterClassA .text:00411E5D vncserver.cpp / hookerRegisterClassA()

RegisterClassExW .text:00411EAA vncserver.cpp / hookerRegisterClassExW()

RegisterClassExA .text:00411EFC vncserver.cpp / hookerRegisterClassExA()

BeginPaint .text:00423EF7 vncserver.cpp / hookerBeginPaint()

EndPaint .text:00423F67 vncserver.cpp / hookerEndPaint()

GetDCEx .text:00423FA7 vncserver.cpp / hookerGetDcEx()

GetDC .text:00424002 vncserver.cpp / hookerGetDc()

GetWindowDC .text:00424041 vncserver.cpp / hookerGetWindowDc()

ReleaseDC .text:00424080 vncserver.cpp / hookerReleaseDC()

GetUpdateRect .text:004240C0 vncserver.cpp / hookerGetUpdateRect()

GetUpdateRgn .text:00424153 vncserver.cpp / hookerGetUpdateRgn()

GetMessagePos .text:00417479 vncserver.cpp / hookerGetMessagePos()

GetCursorPos .text:004174AB vncserver.cpp / hookerGetCursorPos()

SetCursorPos .text:004174F2 vncserver.cpp / hookerSetCursorPos()

SetCapture .text:0041752F vncserver.cpp / hookerSetCapture()

ReleaseCapture .text:00417589 vncserver.cpp / hookerReleaseCapture()

GetCapture .text:004175D9 vncserver.cpp / hookerGetCapture()

GetMessageW .text:00417678 vncmouse.cpp / hookerGetMessageW()

GetMessageA .text:004176A0 vncmouse.cpp / hookerGetMessageA()

PeekMessageW .text:004176C8 vncmouse.cpp / hookerPeekMessageW()

PeekMessageA .text:004176F3 vncmouse.cpp / hookerPeekMessageA()

TranslateMessage .text:00415C38 userhook.cpp / hookerTranslateMessage()

7

GetClipboardData .text:00415DAE userhook.cpp / hookerGetClipboardData()

PFXImportCertStore .text:00413F13 certstorehook.cpp / _hookerPfxImportCertStore()

gethostbyname .text:00424585 Citadel Unique

getaddrinfo .text:004245FE Citadel Unique

[Table 1] Windows API Hooking Point (Common)

Hooked Code Defined in corehook.cpp

Fig. 4. Entry Point of Hooking Code

Before the hooked codes defined in the {coreHook.cpp} file of Zeus are explained, the hooking code

must be explained. Although [Table 1] shows that both NtCreateUserProcess and NtCreateThread

APIs are hooked, NtCreateUserProcess and NtCreateThread are not hooked simultaneously as shown

in Fig. 4. The hooking codes are programmed in sequence so that NtCreateThread is hooked if the

address of NtCreateUserProcess is not attained.

The functions of hooked codes hookerNtCreateUserProcess() and hookerNtCreateThread() are identical.

When a new process is generated, the Citadel agent injects itself by calling its injector routine.

Subsequently, the global injection executed by the injector is maintained.

Hooked Code Defined in wininethook.cpp

The hooked codes set in network APIs are designed for the following two functions.

• HTTP Session Redirection

• Web Injection (MITB Attack)

The hooked code set in the HttpOpenRequest API separately manages new HTTP sessions created.

Sessions to be managed are not selected; all sessions are managed from the middle. The hooked code

set in the HttpEndRequest and IneternetClose APIs is an upgraded version of that of the Zeus source

code. (which explains the similarity to the Zeus code, but they are technically different.) These hooked

codes delete each session that ends from the data structure established for management. The following

is the structure used for session management. Each session has the structure shown in Fig. 5.

Fig. 5. HTTP Session Management Structure

The Session Handle field shows the session managed by the structure and the Event Handle field is

used for synchronization. The pPOSTdata field and pGETdata field are pointers that indicate spoofed

GET/POST data. The pInjectScriptArray field is a pointer that indicates the embedded script to be used

for web injection (MITB attack). A session handle that will connect to a destination set by the attacker

instead of the normal destination is saved in the Fake Session Handle field(used for http session

8

redirection).

Hooked Code Defined in sockethook.cpp

The hooked code set in the WSASend, Send and closesocket APIs become the trigger for executing the

following info-stealing functions.

• FTP Credential Theft

• POP3 Credential Theft

• Macromedia Flash Files Control

[Table 2] shows the routines called by the hooked codes for each FTP/POP3 software from which

credentials are attempted to be stolen. Each routines are required to be different by each software

because it have different credential locations and security algorithms(e.g. encoding or encryption).

Software Code for Credential Theft Zeus’s Source Code

Total Commander

.text:00420272 ftpTotalCommanderReadIni()

.text:00420415 ftpTotalCommanderProc()

.text:00420107 ftpTotalCommanderDecrypt()

.text:00420230 ftpTotalCommanderBasicSearch()

.text:004200E2 randTotalCommander()

.text:0042045E _ftpTotalCommander()

WSFTP

.text:0042066D ftpWsFtpProc()

.text:00420633 ftpWsFtpBasicSearch()

.text:0042089C _ftpWsFtp()

WinSCP

.text:00420FD3 ftpWinScpDecrypt()

.text:0042108D _ftpWinScp()

SmartFTP

.text:00421D3D ftpSmartFtpProc()

.text:00421849 ftpSmartFtpDecrypt()

.text:00421CF8 ftpSmartFtpBasicSearch()

.text:00421F91 _ftpSmartFtp()

FTP Commander

.text:004212EF ftpFtpCommanderProc()

.text:004212D5 ftpFtpCommanderMarkStringEnd()

.text:0042157E _ftpFtpCommander()

FlashFXP

.text:0041FDF0 ftpFlashFxp3Proc()

.text:0041FCE3 ftpFlashFxp3Decrypt()

9

.text:0041FD96 ftpFlashFxp3BasicSearch()

.text:0041FFDE _ftpFlashFxp3()

FileZilla

.text:004209A8 ftpFileZillaProc()

.text:00420C4D _ftpFileZilla()

Far Manager

.text:00420CF0 ftpFarManagerDecrypt()

.text:00420D4A _ftpFarManager()

Core FTP .text:00421621 _ftpCoreFtp()

Macromedia Flash

.text:0041ECF8 getFlashPlayerPath()

.text:0041ED87 _removeMacromediaFlashFiles()

.text:0041ED3C _getMacromediaFlashFiles()

Outlook Express

.text 0041F5C5 windowsMailAccountProc()

.text 0041F3BB getWindowsMailString()

.text:0041EDAD enumWindowsMailMessagesAndFolders()

.text:0041F40E appendWindowsMailInfo()

.text:0041F02A appendOutlookExpressInfo()

.text:0041EF2E _emailWindowsMailRecipients()

.text:0041F7D8 _emailWindowsMail()

.text:0041FB0E _emailWindowsContacts()

.text:0041F8BF _emailWindowsAddressBook()

.text:0041F16A _emailOutlookExpress()

Common

.text:0041ECC1 writeReport()

.text:0042207F _ftpAll()

.text:0041FCB3 _emailAll()

[Table 2] Credential Theft Routines

Hooked Code Defined in vncserver.cpp and vncmouse.cpp

The functions found in {vncserver.cpp} and {vncmouse.cpp} allow remote control of a client on which the

Citadel agent is installed. While a normal remote control program is an agent program that functions in a

single normal process, Citadel’s remote control takes place through the dynamic synchronization of the

hooked codes of related APIs.

It should be noted that a remote control function initialization process is required for the valid operation

of this hooked code. Such a process is executed by option –v in the Main routine of the injector as

shown in Fig. 6.

10

Fig. 5. Injector Routine Control Flow with v option

Hooked Code Defined in userhook.cpp

The hooked code for TranslateMessage and GetClipboardData found in {userhook.cpp} performs the

functions of key stroke and screen scrapper as shown in Fig. 7. String data saved in the clipboard is

also a target for theft.

11

Fig. 6. Hooked Code: TranslateMessage API

Hooked Code Defined in certstorehook.cpp

The hooked code found in {certstorehook.cpp} is used to steal the private keys related to certificates

saved on the client. To load this certificate, the PFXImportCertStore API must be called. By hooking the

PFXImportCertStore API, theft of both the certificate and its key is attempted when the certificate is

loaded.

• Web Browser API Inline Hooking

If web browser Firefox or Opera is used, network communication is executed through the Firefox or

Opera API instead of the Windows API. Thus malicious activities such as web injection and http session

redirection cannot be performed with the same hooked code if these two web browsers are used. As

such, Citadel directly hooks the network communication library (nspr4.dll) of each web browser. [Table 3]

shows the export functions of nspr4.dll hooked.

Export Function Name Hooked Code Same as Zeus’s Hooked Code

PrClose

.text:004134D4 nspr4hook.cpp / hookerPrClose()

.text:0041B332 nspr4hook.cpp / hookerPrClose()

.text:0041294E nspr4hook.cpp / hookerPrClose()

PrOpenTcpSocket .text:0041349A nspr4hook.cpp / hookerPrOpenTcpSocket()

12

.text:0041B2DC nspr4hook.cpp / hookerPrOpenTcpSocket()

PrRead .text:0041AFA6 nspr4hook.cpp / hookerPrOpenTcpRead()

PrWrite .text:0041ADB0 nspr4hook.cpp / hookerPrOpenTcpWrite()

[Table 3] nspr4.dll Library Hooking Point

PrOpenTcpSocket is a function that performs the same function as HttpOpenRequest in the Windows

API. Thus the hooked code set here separately manages created http sessions by creating the structure

shown in Fig. 8. PrClose performs the same function as HttpEndRequest of the Windows API. As with

HttpEndRequest, it removes the structure when a session is ended.

Fig. 7. HTTP Session Management Structure (nspr4.dll)

The Session Handle field shows the handle returned by the function PrOpenTcpSocket. The second field,

pURL, is a pointer that indicates the URL string of a connected website. Saved in skipBytesWirte are

data sizes to be ignored by PR_WRITE. The fourth field is identical to that of the Windows API (string

array pointer in which the script to be used for web injection is saved). ArrayCount indicates how many

arrays exist. The pBufferFromServer pointer indicate the location where data received from the server is

saved and BufferSize indicates the size of the saved location. PendingRequest and PendingResponse

are structures that each contains network request and response data.

• Active: Citadel C&C Command List

Citadel C&C Command List

os_shutdown os_reboot

url_open

bot_uninstall bot_update

dns_filter_add dns_filter_remove

bot_bc_add bot_bc_remove

bot_httpinject_disable bot_httpinject_enable

fs_path_get fs_search_add

fs_search_remove

user_destroy user_logoff

user_execute user_cookies_get

user_cookies_remove user_certs_get

user_certs_remove user_url_block

13

user_url_unblock user_homepage_set

user_ftpclients_get user_emailclients_get

user_flashplayer_get user_flashplayer_remove

module_execute_enable module_execute_disable

module_download_enable module_download_disable

info_get_software info_get_antivirus

info_get_firewall

search_file upload_file

download_file

ddos_start ddos_stop

[Table 4] Citadel C&C Command List derived from Encrypted Data

14

3. Citadel: Additional Factors

A. Windows API Hooking

Citadel malware attempts inline hooking to the Windows API to covertly perform malicious activity. It is

identical to Zeus in that regard. However, Citadel has other hooking points in addition to the APIs hooked

by Zeus. Also, some functions of Zeus' hooked codes have been edited. [Table 5] shows hooking points

and hooked codes that have been added or edited.

Windows API Hooked Code Description

LdrLoadDll .text:00419C0F Hooking Trigger for nspr4.dll, chrom.dll

ExitProcess .text:00419E37 Citadel Finalization Code

CreateProcessAsUserA .text:00419EDE

Integrity Up (Code for upper Windows VISTA)

CreateProcessAsUserW .text:00419EF5

PlaySoundA .text:00419F0C
Noise made on the client when remote control takes

place is removed
PlaySoundW .text:00419F33

gethostbyname .text:00424585

Pharming (DNS Redirection)

getaddrinfo .text:004245FE

[Table 5] Windows API Hooking Point (Citadel)

The hooked code set in the LdrLoadDll API monitors the times when nspr4.dll (Firefox, Opera) and

chrome.dll (Chrome) are loaded. When loading is detected, the code attempts to hooks network function

provided by nspr4.dll and chrome.dll. Functions that hooking is attempted for and the functions of the set

hooked codes are shown in Chapter 2.B(Web Browser API Inline Hooking) for nspr4.dll and Chapter 3.B

for chrome.dll.

The hooked code set in the ExitProcess API performs finalization of the Citadel malware. While most of

Citadel’s functions are identical to those of Zeus, the modules that control the functions (e.g. main and

initialization routines) were developed independently and thus a different finalization code is required.

The hooked code set in the CreateProcessAsUser API is for platforms higher than Windows Vista. It

increases the integrity level of generated processes.

The hooked code set in the PlaySound API is intrinsically related to VNC service. It is a code that

prevents noise from being made on a PC infected by Citadel when remote control is taking place. It is

suspected that the code has been designed to prevent a clicking noise that might be heard by nearby

individuals if speakers are connected to an infected PC.

15

Fig. 8. Hooked Code: gethostbyname API

The hooked codes set in the gethostbyname and getaddrinfo APIs are for local pharming. This is a new

malware function unique to Citadel. For pharming, DNS redirection through Windows API hooking takes

place. However, Fig. 9 shows that codes provided by Zeus have been used to achieve this function . What

this means is that Citadel uses Zeus’ physical modules to achieve the new logical function of local

pharming.

B. Chrome Web Browser API Hooking

Zeus not only hooks the network APIs of Windows but also the network functions provided by web

browsers such as Firefox and Opera. This is because Firefox and Opera use their own functions (not

Windows APIs) for network communications. Chrome, the most popular web browser of late, also uses its

own functions for network communications. The Citadel malware even hooks those functions for http

redirection and web injection (MITB attack) on Chrome.

Finding hooking points on FireFox and Opera is easy because they export network

connection/disconnection (PR_OPEN, PR_CLOSE) and IO calculation (PR_READ, PR_WRITE, …)

functions from a library file called nspr4.dll. On the other hand, it is relatively difficult to find a hooking

point on Chrome as its main DLL chrome.dll does not export such functions. For that reason, Citadel finds

a hooking point by identifying a code pattern in the chrome.dll image loaded on the memory. The address

of the hooking code that identifies a code pattern in chrome.dll and executes inline hooking is

16

{.text:0x0041BEA5}.

Functionality Function RVA in chrome.dll Hooked Code

Open

0xC3FA72 .text:41B69C

0xC422BA .text:41B69C

Close

0xC3FD27 .text:41B6B8

0xC43478 .text:41B6B8

Read

0xC3FEEA .text:41B6CE

0xC4265A .text:41B6CE

Write

0xC40056 .text:41B6F2

0xC426AF .text:41B6F2

[Table 6] chrome.dll Library Hooking Point

[Table 6] shows the hooking points for Chrome Version 15.0.874.106. The analyzed sample succeeds in

hooking by finding the code pattern of Chrome Version 15.x, 16.x and 17.x. The Chrome team promptly

responds to such malware attacks and the Citadel team also provides ongoing updates.

C. AES Crypto Algorithm

The Citadel malware performs multi-layered encryption of configuration files (static/dynamic) and stolen

data by using Custom Xoring, RC4 encryption algorithm and AES encryption algorithm.

17

Fig. 9. Citadel Multi-layered Encryption (Decryption Process)

Fig. 10 shows routine {.text:00409DF7}, executed when configuration data update is commanded by the

C&C, and is an apt representation of Citadel’s multi-layered encryption. More precisely, Fig. 10 shows the

process in which the AES round key is obtained by referencing the md5sum data {.text:00401868}

included in the static configuration data {.text:004064D0} and Citadel agent. Details of the process are as

follows.

• A static configuration data (0x56c bytes) is decoded using the Custom Xoring routine

Custom XORing routine address: {.text:00414CDA}

• RC4 key is found in the decrypted static configuration data

• md5sum hard-coded in the Citadel agent is input to perform MD5 hashing once

• New md5sum is encrypted using the RC4 encryption algorithm; key obtained from the decrypted

static configuration data is used

• md5sum encrypted using RC4 is used as an AES encryption algorithm SEED

If a value at an entry of configuration data is required, an AES key is obtained through the process

shown above and then only the value is decoded to obtain data. If refreshing is required, the same

process is used to decode the entry and plain text is edited and encrypted before being updated on the

payload.

18

[Attachment: Technical – Static Analysis: dropper.exe / PE Image]

File dropper.exe has the binary layout shown in the above diagram. The text section’s size (virtual size) is

0xA077 bytes; two thirds of that comprises known libraries (sky blue), user codes (blue) are approximately

0x3500 bytes. Because the sample was compiled using the Microsoft Visual C++ 9.0 engine and

programmed using OOP (Object-oriented Programming), actual user code size is estimated to be less than

0x3000 bytes. As described in the above report, this user code is divided into two categories: an image-

dropping routine that injects a decoded PE image in child processes and a dropper-delete routine that

generates a batch file and deletes file dropper.exe.

Besides the above 2 core routines, the encoded PE image and encrypted 0x400 data are included in the rsrc

section of sample.exe. It can be deduced that the PE image that will be the Citadel agent is in the rsrc

section as that section is larger (0x356FE) in comparison to the text section. The diagram above shows the

exact address (VA) where the encoded PE image is saved and a part of its data.

19

File layout of the PE image generated by dropper.exe is shown in the above diagram. Unlike general PEs,

this binary does not have a resource area and its text section accounts for more than 80% of the binary. It

can also be seen that the IAT is contained inside the text section. What is also out of the ordinary is that

string data that would normally be located in the data section is included in the text section. This kind of

binary layout differs from the PE structure generated by an ordinary compiler. However, such a design

facilitates injection of binary data in virtual memory as a PE image (because all required data is in a single

text section, target address can be changed according to the status of virtual memory in which the image will

be injected). Since the PE image generated by dropper.exe is injected and executed in a process(explorer

and it's children), this design proves to be efficient.

The basic EP of the PE image is the last part of the text section. As shown in the above diagram, it is written

like a shellcode and located away from user codes. This also demonstrates that the binary data was not

generated by the compiler alone.

20

[Attachment: Technical – 0x400data Decryption Process]

The following data (0x400 bytes) exists behind the file dropper.exe (md5:

97e545aae517a5f816abcd960875ac05).

This 0x400 data physically exists in dropper.exe, but the routine that actually uses or updates this data is

found in the PE image (installer). The PE image (injector) also references this 0x400 data.

The analysis shows that this 0x400 data is encrypted by the RC4 encryption algorithm and the encryption

key is derived from static configuration data (0x56c bytes). As such, when the PE image (installer) is

executed, static configuration data is loaded from the inside of the file (text:004064D0) ahead of any other

activity and the RC4 key generation process commences (RC4 Init).

21

RC4 Init generates a key table (0x100 bytes) based on the input seed (static configuration data). The RC4

Init function is located in {.text:0042A7E8}. When key generation is complete, RC4 decryption of the entire

dropper.exe image commences. The decryption routine (_rc4) is located in {.text:0042A8D8}.

Decryption result is checked in units of 4 bytes to see if it matches 0x45564144. This data is the first 4 bytes

of the decrypted 0x400data (signature of the 0x400 data). In this way, the PE image (installer) determines

the starting location of the 0x400 data. What can be inferred here is that the 0x400 data may not always be

found at the end of the file. This is because the entire image has been decrypted to locate the 0x400 data.

After the PE image (installer) locates the 0x400 data, an integrity check is performed. The second 4 bytes of

the 0x400 data is CRC32 Checksum as can be seen in the above diagram. The data with the Checksum to

be checked are Offset 8 to the end of the 0x400 data. The routine that generates CRC32 Checksum can be

found in {.text:0042A77E}.

The flag value is checked when the integrity check is complete. The flag of the 0x400 data is 0x000C if

dropper.exe has been generated by the Citadel builder. The PE image is designed to function as an installer

if this value remains 0x000C and as an injector if the value is changed to 0x011C. Thus it can be deduced

that the installer edits this flag in the process of Citadel malware installation to enable the injector to function.

The flag value separates the PE image and also represents the size of the data found at the end. If the flag

value is 0xC, 0xC worth of data is saved in the heap. If the flag value is 0x11C, 0x11C worth of data is saved

in the heap. The exact function of this data could not be identified as the data was not used in the analysis.

22

[Attachment: Technical – Citadel Dropper: Anti-analysis Method]

• Encryption for Binary Obfuscation

VA of the custom decoding routine of dropper.exe is {.text:00402ad6}. As shown in the above diagram,

dropper.exe has the library name and API name it will use in an encoded state and dynamically calls and

uses the API needed. The 3 parameters of the decoding routine are as follows.

PARAM1: A value that generates the key table to be used for XORing

PARAM2: Where encoded data (IN) and decoded strings (OUT) are saved

PARAM3: Number of times the loop found inside the routine will be executed (i.e. data size)

This dynamic allocation of APIs to be used by the program is a technique employed to better evade security

programs. The function name and library name required for such dynamic allocation are decoded for the

same reason. A different seed is used for each set of data to be decoded; the seeds are located in

{.rdata:0040d970}.

The encoded PE image in the resource area also is decoded using by the same routine. The above diagram

shows the core {.text:00402c03} of the decoding routine.

• Indirect API Call Method

Dropper does not call APIs directly; APIs are called indirectly using the CallWindowsProc API. This kind of

programming may be due to the characteristics of the Visual C++ 9.0 compiler (Enable obfuscation option),

23

but it is not a normal call method. The following is a call method using CallWindowsProc.

The above diagram shows the two call methods used by the function FunctionCallMehthod, which calls the

CallWindowsProc API from the inside. Parameters of this function are as follows and correspond to the red

area shown in the above diagram.

PARAM1: API name to call (ASCII)

PARAM2: Library name that provides the API to call (ASCII)

PARAM3: Number of parameters the API to call has

If there are parameters to send to the API to call, the required data is saved in the stack (blue area) in

advance and the number of data is then inserted in the 3
rd

 parameter.

24

The above diagram illustrates one of the two call methods through which APIs without parameters are called;

core codes of the FunctionCallMethod are displayed. This function obtains the address of the actual API

code through the input string (library name, API name) and dynamically writes the code that calls the API in

the heap memory. Then, by allocating the code’s starting address to the first parameter of the

CallWindowsProc API, the desired API is indirect called.

25

The above diagram shows the core codes of the FunctionCallMethod when APIs with parameters are called.

Again, the starting address of the code that calls the API is set in the first parameter of CallWindowsProc, but

the code generated in the heap memory is different because the parameters must be handed over.

26

[Attachment: Technical – Citadel’s Characteristics]

• Infection Area

There are several known characteristics of the Citadel Trojan. One of them is that computers in a certain

region, namely Russia and Ukraine, do not get infected as an LCID comparison shows.

The above diagram shows codes that compare the LCID value obtained through the GetKeyboardLayoutList

API and the Russian/Ukrainian LCID value. If these LCID values are identical, the terminate routine is

executed immediately.

• -z Option: Print Debug Message

The following is another known appearance.

If the PE image (injector) is executed using the -z option, the string ‘Coded by BRIAN KREBS for personal

use only. I love my job & wife’ is displayed in the MessageBoxA API. Brian Krebs is the name of a security

researcher who researches commercial bots such as Zeus, SpyEye and Citadel.

27

About AhnLab, inc.

AhnLab develops industry-leading information security solutions

and services for consumers, enterprises, and small and medium

businesses worldwide. As a leading innovator in the information

security arena since 1995, AhnLab’s cutting-edge technologies

and services meet today’s dynamic security requirements, ensure

business continuity for our clients, and contribute to a safe computing

environment for all

We deliver a comprehensive security lineup, including proven, world-

class antivirus products for desktops and servers, mobile security

products, online transaction security products, network security

appliances, and consulting services.

AhnLab has firmly established its market position and manages sales

partners in many countries worldwide.

Copyright (C) AhnLab, Inc. 1988-2013. All rights reserved.

